Μια πλήρης επισκόπηση του HTML Canvas

Πρέπει να διαβάσετε πριν κάνετε κάτι με την ετικέτα καμβά, ακόμα κι αν το γνωρίζετε ήδη.

ΣΦΑΙΡΙΚΗ ΕΙΚΟΝΑ

Το στοιχείο καμβά HTML χρησιμοποιείται για τη σχεδίαση γραφικών "raster" σε μια εφαρμογή ιστού. Το Canvas API παρέχει δύο περιβάλλοντα σχεδίασης: 2D και 3D, και σε αυτόν τον οδηγό, θα μιλήσουμε για το 2D (το οποίο θα το αναφέρω στο Canvas API για απλότητα).

Πριν ξεκινήσω, θέλω να γνωρίζετε ένα πολύ σημαντικό σημείο. Το Canvas είναι ένα raster API γραφικών - χειρίζεστε πράγματα σε επίπεδο pixel. Αυτό σημαίνει ότι το υποκείμενο λογισμικό δεν γνωρίζει το μοντέλο που χρησιμοποιείτε για να εμφανίσετε το περιβάλλον σας - δεν γνωρίζει εάν σχεδιάζετε ένα ορθογώνιο ή έναν κύκλο.

Έχω χωρίσει το API του Καμβά σε ξεχωριστά κομμάτια, για να το κάνετε ένα προς ένα:

  • API διαδρομής
  • Στυλ σχεδίασης
  • Κλίσεις και μοτίβα
  • Άμεσος χειρισμός εικονοστοιχείων και εικόνες
  • Μεταμορφώσεις
  • Χτυπήστε περιοχές
  • Κατάσταση και μέθοδος κλιπ ()

Ρύθμιση

Για να ενεργοποιήσετε τον οδηγό Canvas, δημιουργήστε ένα αρχείο HTML και ένα αρχείο JS συνδεδεμένο σε αυτό.

  Canvas Demo   This will be displayed if your browser doesn't support the canvas element. The closing tag is necessary.    

Στο canvas-demo.jsαρχείο σας ,

// canvas-demo.js const demoCanvas = document.getElementById(’canvas-demo’).getContext(’2d’); window.onload = function() {// make sure to use onload /* Add code here as we go!!! @nodocs */ }

Μονοπάτια

Τα μονοπάτια είναι μια συλλογή σημείων στο πλέγμα 2D pixel στον καμβά. Σχεδιάστηκαν με τη βοήθεια αυτού του API. Κάθε σχήμα σε μια διαδρομή που σχεδιάζετε ονομάζεται "subpath" από την τεκμηρίωση του W3C.

  • beginPath()και closePath(): Όλα τα σχήματα που σχεδιάζετε προστίθενται στην τρέχουσα διαδρομή. Εάν καλέσετε strokeή fillαργότερα, θα εφαρμοστεί σε όλα τα σχήματα που έχετε σχεδιάσει στην τρέχουσα διαδρομή. Για να αποφευχθεί αυτό, θα διαιρέσει το σχέδιό σας καλώντας beginPathκαι closePath.
// Calling this isn't necessary, but a good practice. demoCanvas.beginPath(); /* * Drawing code, copy and paste each example (separately) here */ demoCanvas.closePath();// this is required if you want to draw // in a separate path later
  • moveTo(x,y) : Δηλώνει την κατασκευή ενός νέου σχήματος που ξεκινά από το σημείο (x, y).
  • lineTo(x,y): Σχεδιάζει μια γραμμή από το τελευταίο σημείο στο τρέχον σχήμα έως το πέρασμα. Εάν δεν δημιουργήθηκε σχήμα (μέσω moveTo), τότε δημιουργείται ένα νέο ξεκινώντας από (x, y) (ακριβώς όπως moveTo).
  • quadraticCurveTo(cpx1,cpy1,x,y)και bezierCurveTo(cpx1,cpy1,cpx2,cpy2,x,y): Σχεδιάζει μια τετραγωνική / κυβική καμπύλη bezier ξεκινώντας από το τελευταίο σημείο στο σχήμα, περνώντας από τα σημεία ελέγχου ( cpx1,cpy1και cpx2,cpy2) και τελειώνει στις x,y. Η καμπύλη Bezier είναι απλώς μια «ομαλή» καμπύλη που περνά μέσα από τα ενδιάμεσα σημεία «ελέγχου» με δεδομένα τελικά σημεία. Σημειώστε ότι η καμπύλη δεν χρειάζεται να περάσει ακριβώς από τα σημεία ελέγχου - μπορεί να εξομαλυνθεί.
  • arcTo(x1,y1,x2,y2,radius): Αυτή είναι μια ελαφρώς περίπλοκη μέθοδος χρήσης. Ας υποθέσουμε ότι το τρέχον σημείο στη διαδρομή είναι x0,y0- τότε arcToθα σχεδιάσετε ένα τόξο που έχει δύο εφαπτόμενες που συνδέουν αυτά τα δύο ζεύγη των σημείων (x1,y1) & (x0,y0)και (x1,y1) & (x2,y2). Η ακτίνα του τόξου θα είναι αυτή που δίνεται. Όσο μεγαλύτερη είναι η ακτίνα, τόσο πιο μακριά θα είναι το τόξο x1,y1, (Βλέπε Παράδειγμα 1.2 για οπτική ευκρίνεια). Εάν δεν το έχετε χρησιμοποιήσει moveToακόμα, τότε x0,y0θα είναι από προεπιλογή 0,0.
  • arc(x,y,radius,startAngle,endAngle,counterclockwise): Συνδέει το τρέχον σημείο στη διαδρομή (από προεπιλογή 0,0) με την αρχή του τόξου. Τραβάει το τόξο από το κέντρο x,yτης ακτίνας radius, από startAngleέως endAngle. (Σημείωση: Σε αντίθεση με τα μαθηματικά στυλό και χαρτιού, οι γωνίες περιγράφονται προς την δεξιόστροφη κατεύθυνση στο Canvas API). αλλά κάτω από τέσσερις ειδικές συνθήκες - (x0,y0)ισούται (x1,y1), (x1,y1)ισούται (x2,y2), (x0,y0),(x1,y1),(x2,y2)είναι γραμμική, ή εάν radiusείναι μηδέν, τότε η κλήση προς arcθα είναι ισοδύναμη lineTo(x1,y1)και αντλείται μια γραμμή.
  • rect(x,y,w,h): Σχεδιάζει ένα ορθογώνιο με την επάνω αριστερή γωνία x,yκαι πλάτους wκαι ύψους h.

Παράδειγμα 1.1:

Τώρα πρέπει να δοκιμάσουμε μια επίδειξη - πρόκειται να σχεδιάσουμε μερικές τυχαίες οριζόντιες γραμμές και μετά ένα σκίτσο του ματιού. Το αποτέλεσμα θα μοιάζει με κάτι στα αριστερά. Μην ξεχάσετε να διαβάσετε τον κωδικό και να παίξετε τον κωδικό.

/* Draw horizontal subpaths (shapes) in one path. */ // Draw a pattern of vertically stack horizontal // lines. demoCanvas.moveTo(10, 10);// start at (10,10) demoCanvas.lineTo(110, 10); demoCanvas.moveTo(10, 20);// 10 pts below demoCanvas.lineTo(180, 20); demoCanvas.moveTo(10, 30); demoCanvas.lineTo(150, 30); demoCanvas.moveTo(10, 40); demoCanvas.lineTo(160, 40); demoCanvas.moveTo(10, 50); demoCanvas.lineTo(130, 50); // try removing this moveTo, the quad-curve will then // start from from (130, 50), due to the lineTo. demoCanvas.moveTo(10, 100);// quad-curve starts from here demoCanvas.quadraticCurveTo(110, 55, 210, 100);// curve upward demoCanvas.moveTo(10, 100);// back here, let's draw one below demoCanvas.quadraticCurveTo(110, 145, 210, 100);// curve below // that forms the eye outline demoCanvas.moveTo(132.5, 100);// remove this, a horizontal line will be // drawn from (210, 100) to (132.5, 100) because arc() connects the last // point to the start of the arc. demoCanvas.arc(110, 100, 22.5, 0, 2*Math.PI, false);// pupil (circle) /* We'll talk about this shortly */ demoCanvas.stroke();// draws (by outlining our shapes in the path)

Παράδειγμα 1.2:

Στο παρακάτω παράδειγμα, δημιουργώ μια κυβική καμπύλη (με οπτικές οδηγίες), arcToκλήσεις στη μέση δεξιά και ένα πακέτο με arc()κάτω αριστερά. Τα σημεία ελέγχου (στην κυβική καμπύλη) είναι οι γωνιακές μορφές από τις τρεις οδηγίες.

(x1,y1)γιατί arcToείναι η γωνία που σχηματίζεται από τις δύο εφαπτόμενες.

// comment this block out if you can see the cubic curve demoCanvas.moveTo(100, 100); demoCanvas.lineTo(150, 10); demoCanvas.moveTo(250, 100); demoCanvas.lineTo(200, 190); demoCanvas.moveTo(150, 10); demoCanvas.lineTo(200, 190) demoCanvas.moveTo(100, 100); demoCanvas.bezierCurveTo(150, 10, 200, 190, 250, 100); // arcTo() is too complicated to use // demoCanvas.stroke(); demoCanvas.closePath(); demoCanvas.beginPath(); demoCanvas.moveTo(200, 200);// comment out above line (and comment this line), // then the arc's tangent will come from (0,0)!! Try it. demoCanvas.arcTo(100, 300, 300, 300, 100); demoCanvas.moveTo(200, 200); demoCanvas.arcTo(100, 300, 300, 300, 50); demoCanvas.moveTo(100, 300); demoCanvas.lineTo(300, 300); demoCanvas.moveTo(100, 300); demoCanvas.lineTo(200, 200); demoCanvas.moveTo(50, 300); // packman demoCanvas.arc(50, 300, 35, Math.PI/6, 11*Math.PI/6, false); demoCanvas.lineTo(50, 300); demoCanvas.stroke();

Στυλ σχεδίασης

Μέχρι τώρα, έχουμε σχεδιάσει απλά μονοπάτια με λεπτές γραμμές. Τα στυλ σχεδίασης θα μας βοηθήσουν να κάνουμε το σχέδιό μας πολύ καλύτερο.

Λάβετε υπόψη ότι δεν μπορείτε να εφαρμόσετε δύο διαφορετικά στυλ στην ίδια διαδρομή. Για παράδειγμα, εάν θέλετε να σχεδιάσετε μια κόκκινη γραμμή και μια μπλε γραμμή - θα πρέπει να δημιουργήσετε μια νέα διαδρομή για να σχεδιάσετε την μπλε. Εάν δεν δημιουργήσετε μια νέα διαδρομή, τότε όταν καλέσετε strokeτη 2η φορά μετά τη ρύθμιση του χρώματος του στυλ εμφάνισης σε μπλε, και οι δύο γραμμές θα είναι μπλε. Ως εκ τούτου, τα στυλ εφαρμόζονται σε όλες τις δευτερεύουσες διαδρομές, είτε έχουν ήδη χαϊδευτεί είτε όχι.

Ορισμένες ιδιότητες του αντικειμένου περιβάλλοντος 2D demoCanvasορίζονται για αυτόν τον σκοπό:

  • lineWidth: Το πάχος των γραμμών που σχεδιάζονται. Από προεπιλογή, αυτό είναι 1. Ως εκ τούτου, τα δύο παραπάνω παραδείγματα χρησιμοποίησαν ένα περίγραμμα πάχους 1 pixel.
  • lineCap: Αυτό είναι το καπάκι που εφαρμόζεται στα άκρα των υποδιαδρομών (σχήματα). Είναι μια συμβολοσειρά και μπορεί να έχει τρεις έγκυρες τιμές: "πισινό", "στρογγυλό", "τετράγωνο" (Βλέπε Παράδειγμα 1.3 για οπτική ευκρίνεια). Το «άκρο» θα έχει τελικές γραμμές χωρίς καπάκι - με αποτέλεσμα άκαμπτα, ορθογώνια άκρα σαν λεπτά ορθογώνια. Το "στρογγυλό" προσθέτει έναν ημικύκλιο στα άκρα για να δώσει ομαλά άκρα. Το "τετράγωνο" προσθέτει ένα τετράγωνο στο τέλος, αλλά μοιάζει με "πισινό". Τα «στρογγυλά» και «τετράγωνα» προσθέτουν λίγο επιπλέον μήκος σε κάθε δευτερεύον μονοπάτι.
  • lineJoin : This decides how two overlapping lines are joined. For example, if you want to create a right-hand arrow (>), then you can change how the corner is formed with this property. This has three valid values: “round”, “bevel” and “miter”. Check Example 1.4 for how they change the corners. (The default value is “miter”). “round” will form circular corners, while “bevel” will create rigid three-sided corners, and “miter” will form a sharp edge.
  • miterLimit : When lineJoin="miter" , this decides the maximum distance b/w the inner and outer corner of the line. See Example 1.4(b) for visual clarity. If the miter-limit is too high, then sharp arrows may have a large common area b/w the two lines. If miter-limit is passed, then the display backs into a bevel join.

Example 1.3 & 1.4:

In Example 1.3 on the left, you can see how the round & square line-capped lines are longer than the default capping. (NOTE: The thicker the line, the greater the increase in length)

In Example 1.4(a), you can see how round and bevel joins work. The lines created are identical in the upper and lower parts. Only the lineJoinproperties are different.

In Example 4.1(b), you can see how a mitered join works, and what happens if the mitered length is passed.

Additional display style properties are defined:

  • font : This string defines how you want to style text. For example, demoCanvas.font="10px Times New Roman" is a valid font value.
  • textAlign : The valid values are — “start”, “end”, “left”, “right”, and “center”. The default is “start”.
  • textBaseline : The valid values are — “top”, “hanging”, “middle”, “alphabetic”, “ideographic”, “bottom”. The default is “alphabetic”.

Actual drawing methods

In the examples till now, you might have noticed I’ve used demoCanvas.stroke() before closing each path. The stroke method does that actual drawing partly in those examples.

  • stroke : This method draws the outline around each subpath (shapes) according to the lineWidth and related properties.
  • fill : This method fills the interior of the shape traced by the path. If the path is not closed, then it will close it automatically by connecting the last point to the first point.
demoCanvas.moveTo(10,10); demoCanvas.lineTo(50, 50); demoCanvas.lineTo(10, 50); demoCanvas.fill();

The above code does not close the triangle (10,10),(50,50),(10,50) but calling fill() fills it as expected.

  • clearRect(x,y,w,h) : Clears the pixels in the rectangle formed with the given parameters.
  • strokeRect(x,y,w,h) : Equivalent to calling rect and then stroke . It doesn’t add the rectangle to the current path — hence, you can change the style later and call stroke without affecting the rectangle formed.
  • fillRect(x,y,w,h) : Equivalent to calling rect and then fill . This also doesn’t add the rectangle to the current path.
  • strokeText(text,x,y,maxWidth) and fillText(text,x,y,maxWidth) : Writes the text at (x,y) according to the strokeStyle / fillStyleproperty. maxWidth is optional and defines the maximum length in pixels that you want the text to occupy. If the text is longer, then it is scaled to a smaller font. measureText("text").width can be used to find the display width of a piece of text, based on the current font.

NOTE: fillStyle and strokeStyle are the properties that can be set to any CSS color string to set the fill & stroke colors.

Gradients and Patterns

Out of the box, the 2D context provides linear and radial gradients. The createLinearGradient and createRadialGradient methods return CanvasGradient objects, which can then be modified what we want.

  • createLinearGradient(x0,y0,x1,y1) : Constructs a linear gradient that runs on the line x0,y0 to x1,y1 .
  • createRadialGradient(x0,y0,r0,x1,y1,r1) : Constructs a radial gradient that runs in the cone (of circles) with the top (inner circle) of radius r0and bottom (outer circle) of radius r1 . The first color would have a radius of r0 .

The CanvasGradient has one method: addColorStop(offset,color) . The gradient starts at 0 and ends at 1. The color at the position of offset will be set using this method. For example, addColorStop(.5, "green") will make the middle color green. Colors b/w two adjacent stops will be interpolated (mixed).

Example 1.6:

In the example on the left, you can see how linear and radial gradients work.

var linearGrad = demoCanvas.createLinearGradient(5,5,100,5); linearGrad.addColorStop(0, "blue"); linearGrad.addColorStop(.5, "green"); linearGrad.addColorStop(1, "red"); demoCanvas.strokeStyle=linearGrad; demoCanvas.lineWidth=50; demoCanvas.moveTo(5,5); demoCanvas.lineTo(100,5); demoCanvas.stroke();// change strokeStyle(l10) to fillStyle(l10) // and stroke() to fill(). Then, change lineTo(100,5) to rect(5,5,95,50). // Results should be almost same. demoCanvas.closePath(); demoCanvas.beginPath(); var radialGrad = demoCanvas.createRadialGradient(50,50,10,50,50,40); radialGrad.addColorStop(0, "blue"); radialGrad.addColorStop(.5, "green"); radialGrad.addColorStop(1, "red"); demoCanvas.fillStyle=radialGrad; demoCanvas.arc(50,50,30,0,2*Math.PI,false); demoCanvas.fill();

You might wonder what if x0,y0 and x1,y1 given to the linear/radial gradient are not equal to the line/arc we create? See Example 1.7

Example 1.7

var linearGrad = demoCanvas.createLinearGradient(5,5,100,5); linearGrad.addColorStop(0, "blue"); linearGrad.addColorStop(.5, "green"); linearGrad.addColorStop(1, "red"); demoCanvas.strokeStyle=linearGrad; demoCanvas.lineWidth=50; demoCanvas.moveTo(50,5); demoCanvas.lineTo(155,5); demoCanvas.stroke();// change strokeStyle(l10) to fillStyle(l10) // and stroke() to fill(). Then, change lineTo(100,5) to rect(5,5,95,50). // Results should be almost same. demoCanvas.closePath(); demoCanvas.beginPath(); var radialGrad = demoCanvas.createRadialGradient(50,50,10,50,50,40); radialGrad.addColorStop(0, "blue"); radialGrad.addColorStop(.5, "green"); radialGrad.addColorStop(1, "red"); demoCanvas.fillStyle=radialGrad; demoCanvas.arc(60,60,30,0,2*Math.PI,false); demoCanvas.fill();

Direct pixel manipulation & Images

The ImageData object can be used to manipulate individual pixels. It has three properties:

  • width : The width of the image data in device-display pixels.
  • height : The height of the image data in device-display pixels.
  • data : This is a Uint8ClampedArray (MDN doc here) which contains the individual pixel data in a series of (R,G,B,A) bytes for the top-most pixel to the bottom-right pixel. So the nth pixel’s red value would be at data[y*width+x] , green would be at data[y*width+x+1] , blue would be at data[y*width+x+2] , and the alpha would be at data[y*width+x+3] .

NOTE: A RGBA value can be used to represent a color — where R,G,B are the amounts of red, green, and blue and A is the opacity (alpha value). In the Canvas, these elements can have any integer value in [0, 255].

You can get a ImageData object with the following methods in the Canvas API:

  • createImageData(sw,sh) : This creates an ImageData object of width and height sw and sh , defined in CSS pixels. All the pixels will be initialized to transparent black (hex R,G,B=0, and also A=0).
CSS pixels might map to a different number of actual device pixels exposed by the object itself
  • createImageData(data) : Copies the given image-data and returns the copy.
  • getImageData(sx,sy,sw,sh) : Returns a copy of the canvas’s pixels in the rectangle formed by sx,sy,sw,sh in a ImageData object. Pixels outside the canvas are set to transparent black.
  • putImageData(imagedata,dx,dy,dirtyX,dirtyY,dirtyWidth,dirtyHeight): (The last four ‘dirty’ arguments are optional). Copies the pixel values in imagedata into the canvas rectangle at dx,dy . If you provide the last four arguments, it will only copy the dirty pixels in the image data (the rectangle formed at dirtyX,dirtyY of dimensions dirtyWidth*dirtyHeight ). Not passing the last four arguments is the same as calling putImageData(imagedata,dx,dy,0,0,imagedata.width,imagedata.height).
For all integer values of x and y where dirtyX ≤ x < dirtyX+dirtyWidth and dirtyY ≤ y < dirtyY+dirtyHeight, copy the four channels of the pixel with coordinate (x, y) in the imagedata data structure to the pixel with coordinate (dx+x, dy+y) in the underlying pixel data of the canvas.

Example 1.8:

I’ve filled the whole 400x400 canvas with random colors (fully opaque) using the getImageData/putImageData methods.

Note that using beginPath/closePath isn’t necessary to use the ImageData API — because your not using the Canvas API to form shapes/curves.

/* replace this line with demoCanvas.createImageData(390,390) instead. */ var rectData = demoCanvas.getImageData(10, 10, 390, 390); for (var y=0; y<390; y++) { for (var x=0; x<390; x++) { const offset = 4*(y*390+x);// 4* because each pixel is 4 bytes rectData.data[offset] = Math.floor(Math.random() * 256);// red rectData.data[offset+1] = Math.floor(Math.random() * 256);// green rectData.data[offset+2] = Math.floor(Math.random() * 256);// blue rectData.data[offset+3] = 255;// alpha, fully opaque } } demoCanvas.putImageData(rectData, 10, 10); /* beginPath/closePath aren't required for this code */

Images can be drawn onto the canvas directly. The drawImage can be used in three different ways to do so. It requires a CanvasImageSource as the pixel source.

A CanvasImageSource can be one of the following — HTMLImageElement, HTMLCanvasElement, HTMLVideoElement. To copy into the canvas, you can use a . You could also copy an existing canvas or the screenshot of a video!!!
  • drawImage(image,dx,dy) : Copies the image-source into the canvas at (dx,dy). The whole image is copied.
  • drawImage(image,dx,dy,dw,dh) : Copies the image-source into the rectangle in the canvas at (dx,dy) of size (dw,dh). It will be scaled down or scaled up if necessary.
  • drawImage(image,sx,sy,sw,sh,dx,dy,dw,dh) : Copies the rectangle in the image source sx,sy,sw,sh into the rectangle in the canvas dx,dy,dw,dhand scales up or down if required. However, if the rectangle sx,sy,sw,shhas parts outside the actual source — then the source rectangle is clipped to include the inbound parts and the destination rectangle is clipped in the same proportion; however, you shouldn’t pass any out-of-bounds rectangle — keep it simple, stupid.

Example 1.9:

var image = document.getElementById('game-img'); demoCanvas.drawImage(image, 50, 50, 200, 200, 100, 100, 200, 200); /* beginPath/closePath aren't required for this code */

NOTE: Add this to your HTML —

Transformations

Now we’re getting to the exciting parts of the Canvas API!!!

The Canvas uses a transformation matrix to transform the input (x, y) coordinates into the displayed (x, y) coordinates. Note that pixels drawn before the transformation are not transformed — they are untouched. Only stuff drawn after applying the transformation will be changed.

There are three in-built transformation methods:

  • scale(xf,yf) : This method scales the input by xf in the horizontal direction and yf in the vertical direction. If you want to magnify an image by a factor of m , then pass xf=yf=m . To stretch/squeeze an image horizontally by m , xf=m,yf=1 . To stretch/squeeze an image vertically by m , xf=1,yf=m .
  • rotate(angle) : Rotates the input by an angle of angle in the clockwise direction, in radians.
  • translate(dx,dy) : Shifts the input by dx,dy .

Example 2.0:

var image = document.getElementById('game-img'); demoCanvas.drawImage(image, 0, 0, 400, 400); demoCanvas.rotate(Math.PI / 6); demoCanvas.scale(2, 2); demoCanvas.translate(10, 10); demoCanvas.drawImage(image, 0, 0, 400, 400);
In Example 2.0, notice how the original image is intact. Only the second image (overlay) is transformed by three methods — rotate, scale, transform.

To revert all transformations:

demoCanvas.setTransform(1, 0, 0, 0, 0, 1); // sets the transform to the identity matrix

NOTE:

  • Changing the order of transformation can affect the final result.
  • For advanced users, you may want to look at the transform and setTransform methods. This will let you set the 3D transformation matrix directly.
  • getImageData and putImageData are not affected by the transform. That means if you draw a black rectangle using putImageData , it won’t be transformed (rotated/scaled/translated).
  • As changing the transform only works for drawings done after applying it, you can’t scale/rotate/translate the existing canvas directly (nor does getImageData and then putImageData work). You may have to create another hidden canvas of the same size — and then copy the image-data into the 2nd canvas, then use drawImage on the 2nd canvas.
  • Check this example: //canvasdemo2d.github.io/ (source: //github.com/canvasdemo2d/canvasdemo2d.github.io). Move your cursor over the canvas and see what it does. It won’t work on mobile phones, unfortunately. The cascading effect is due to the fact that I am translating the canvas w.r.t mouse using drawImage . drawImagethen writes to the same canvas it’s reading from, which causes the repeating pattern!

Hit Regions

As of the time of writing (March 2019), support for hit regions is experimental in Chrome and on Firefox. Mobile browser don’t even support it at all. Hence, I will explain to you “what” could hit regions be used for.

Hit regions are used to catch pointer events on the canvas and know “where” the user clicked. For example, you could have two rectangles A & B — when the user clicks A, you want to perform action $A and when the user clicks B, you want to perform action $B. Let’s walk through the whole process!

A hit region is related to these three things:

  • Path: The current path when the hit region was created (for example, a rectangle). All pointer events inside the path are routed to that hit region.
  • Id: An unique id string to identify the hit region by the event handler.
  • Control: An alternative DOM element ( HTMLButtonElement , for example) that gets the pointer events instead.

NOTE: The path is automatically provided by the canvas when adding a new hit region. Only one — id or control — is needed to form a hit region.

Methods for manipulating the hit-region list of a canvas are:

  • addHitRegion(options) : Takes a HitRegionOptions object and forms a hit-region enclosed by the current path. The options argument should be a string id property or a HTMLElementcontrol property.
  • removeHitRegion(id) : Removes the hit region with the id id so that it no longer receives any pointer events.
  • clearHitRegions() : Removes all hit regions.
demoCanvas.fillStyle = 'red'; demoCanvas.rect(10,10,60,60); demoCanvas.fill();// first rectangle demoCanvas.addHitRegion({ id: 'btn1' }); demoCanvas.fillStyle = 'blue'; demoCanvas.rect(10,110,60,60); demoCanvas.fill(); demoCanvas.addHitRegion({ id: 'btn2' }); document.getElementById('demo-canvas').onpointerdown = function(evt) { // demoCanvas is the 2d context, not the HTMLCanvasElement console.log('Hello id: ' + evt.region);// region is hitregion id } // This code might not work due to this being an // unsupported (new) feature of HTML5.

NOTE: Hit regions aren’t supported — but that doesn’t mean you have to use them to capture pointer events. You could create your “own hit-region list” and representations of boundaries of regions (cause you can’t get the current path from the canvas, too bad). In the document.getElementById('demo-canvas').onpointerdown method, get the current clientX,clientY properties and search through the hit region list. Based on the hit region that contains the point, you can perform the intended action.

States and the clip() method

State saving is a convenience provided by the W3C specification. You can save the current state of a canvas and restore it later.

You could also build such a system (partially) by writing your own JavaScript model. But you would have to save a quite of stuff: transformation matrix, hit-region list, style properties, and so on. Furthermore, you cannot revert the clipping area (we’ll get to the clipmethod in some time) directly.

NOTE: The save / restore methods do not save & restore the actual drawing/pixels. They only save other properties.

Hence, I would recommend heavily using the save & restore methods to go back and forth instead of erasing stuff on your own or making your own state-saving mechanism.

The CanvasRendering2DContext object has an associated state stack. The save method will push the current canvas state onto that stack, while the restore method will pop the latest state from the stack.

The Clipping Region

The clipping region is a specific region in which all drawings are to be done. Obviously, by default, the clipping region is the rectangle is the whole canvas. But you may want to draw in a specific region instead of the whole thing. For example, you may want to draw the lower half of a star formed by multiple lineTo methods.

So, for example, let’s say you know how to draw a star in the canvas. It touches all sides of the canvas. But now you want to only display the lower half of the star. In this scenario, you would:

  1. Save the state of the canvas
  2. Clip the lower half region
  3. Draw your star (as if on the whole canvas)
  4. Restore the canvas state

To clip a region, you have to call the clip() method which does the following:

The clip() method must create a new clipping region by calculating the intersection of the current clipping region and the area described by the path, using the non-zero winding number rule. Open subpaths must be implicitly closed when computing the clipping region, without affecting the actual subpaths. The new clipping region replaces the current clipping region.

When the context is initialized, the clipping region must be set to the rectangle with the top left corner at (0,0) and the width and height of the coordinate space.

— W3C Documentation for Canvas 2D Context

demoCanvas.save(); demoCanvas.rect(0, 200, 400, 200);// lower-half rectangle subpath demoCanvas.clip(); /* star drawing method */ demoCanvas.restore();

That’s all for now. I will write an article on animations with the canvas and how to write a custom interface completely on the canvas.

Further reading:

  • How to use Firebase for building Android multiplayer games
  • Πώς να συγχρονίσετε την εφαρμογή παιχνιδιών σας σε πολλές συσκευές Android
  • Κυκλικές εξαρτήσεις σε JavaScript

Ο Shukant Pal είναι ο δημιουργός του πυρήνα Silcos. Είναι άπληστος μαθητής και τώρα ασκεί προηγμένη ανάπτυξη εφαρμογών ιστού Έχει πρακτική εμπειρία με το React και το οικοσύστημά του.

Όλες οι προσφορές λαμβάνονται από τα έγγραφα του W3C για το Canvas 2D Context.

Γεια, είμαι ο Shukant Pal. Αναπτύσσω πολλές διαδικτυακές εφαρμογές στον ελεύθερο χρόνο μου. Ακολουθήστε με στα κοινωνικά μέσα.